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 center of circle

where
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 rotation of Δθ about (x*, y*) from (x, y) to (x’, y’) in time Δt
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 given Δθ and Δdist we can compute the velocities needed to 

generate the motion

 notice what the algorithm has done

 it has used an inverse motion model to compute the control vector 

that would be needed to produce the motion from xt-1 to xt

 in general, the computed control vector will be different from the 

actual control vector ut
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 recall that we want the posterior conditional density

of the control action ut carrying the robot from pose xt-1 to xt

in time Δt

 so far the algorithm has computed the required control action

needed to carry the robot from position (x y) to position

(x’ y’)

 the control action has been computed assuming the robot moves 

on a circular arc
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 the computed heading of the robot is

 the heading should be

 the difference is

 or expressed as an angular velocity
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Eq 5.25, 5.28

the in-place bearing 

error; i.e., the amount

the robot must 

rotate by at the final

location to achieve a

bearing of 𝜃′
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 similarly, we can compute the errors of the computed linear 

and rotational velocities
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 if we assume that the robot has independent control over its 

controlled linear and angular velocities then the joint density 

of the errors is

 what do the individual densities look like?
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 the most common noise model is additive zero-mean noise, 

i.e.

 we need to decide on other characteristics of the noises

 “spread” variance

 “skew” skew

 “peakedness” kurtosis

 typically, only the variance is specified

 the true variance is typically unknown
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 assumes that the variances can be modeled as

where the i are robot specific error parameters

 the less accurate the robot the larger the i

 assumption models standard deviation of the noise is proportional 

to the commanded velocity of the robot
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 a robot travelling on a circular arc has no independent control 

over its heading

 the heading must be tangent to the arc

 this is problematic if you have a noisy commanded angular 

velocity 

 thus, we assume that the final heading is actually given by

where     is the angular velocity of the robot spinning in place
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 assumes that

where
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